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SUMMARY 

For a drug that is repetitively dosed in order to maintain a certain minimum effective 
concentration in blood (MEC) there exists an optimum rate-determining drug input con- 
stant, (kras)opt, which will result in the maximum time between doses (rmax). By defining 
Q** = [Amax/(MEC)Vd)], where A~nax is the steady-state maximum amount in the site of 
administration and Vd is the volume of distribution of drug, the (krds)opt may be esti- 
mated from e/Q**, provided Q** i> 8. This estimate applies to all of the 1- and 2-compart- 
ment models considered in the report. The relative onset time is shown to be 4 to 5 times 
the rate-determining half-life defined as t0.s = 0.693/krds. Thus, a prodrug with an ideal 
rate.limiting input constant will increase the onset time relative to the drug itself unless 
a compensatory loading dose is employed. Equations are provided for estimating the load- 
ing dose, maintenance dose, onset time, optimum krds and r. The applicability and sig- 
nificance of the methods are discussed. 

INTRODUCTION 

Equations normally used for calculating multiple dosage regimens assume that absorp- 
tion is faster than the elimination of drug (Kruger-Thiemer, 1966, 1969). If duration is to 
be extended, it is necessary to intentionally reduce the input rate so that it becomes 
slower than elimination. The input rate constant must be made rate-determining (Byron 
and Notari, 1976). 

Notari (1977) has reviewed the potential for extending duration by developing pro- 
drugs with rate.limiting first-order drug delivery (krds) due to either absorption of pro- 
drug or its subsequent conversion to drug. Byron et al. (1978)have demonstrated that the 
value of the optimum first-order drug input constant (krds)opt which provides the maxi- 
mum duration of drug activity following administration of a single fixed dose of prodrug, 
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may be easily estimated a priori. The optinmm values for the cases reported varied from 
0.013 to ~O.8 × the elimination rate constant (0.693/to.s). Thus, when rate-limiting 
input is used to extend the duration, the optimum value may be extremely small relative 
to elimination. 

There are several problems which arise in the design, evaluation and use of such a 
prodrug. If input is very slow, then single dose screening procedures may reject an ideal 
prodrug as 'inactive'. Repetitive multiple dosing of a very slow input prodrug would also 
result in a long onset period during which there will be no therapeutic effect. The opti- 
mum rate-determining drug input constant for multiple dose therapy may differ from that 
reported for a single dose (Byron et al., 1978). 

The present study has established a simple method for estimating the optimum input 
constant during multiple dose administration of drugs described by 1- and 2-compartment 
models. Equations derived for these systems allow calculation of the loading dose, main- 
tenance dose and dosing interval to provide immediate therapeutic effect and the maxi- 
mum time between doses (i.e. (krds)op t and maximum duration). The approach can be 
used to def'me the optimum characteristics for a prodrug of any given drug. Optimum 
theoretical results may be appraised for feasibility of prodrug design. Several questions 
can be examined a priori. For example, it is possible to calculate the input rate and the 
dose ~.e necessary to provide a desired dosage interval. A specific dosage interval might 
be considered as ideal for a particular drug from a clinical viewpoint. It may be imme- 
diately apparent, ~ing ~,hese calculations, that such a system could not be achieved. 
Conversely, it might appear feasible until some systems are tes~ted. At this point the test 
itself can be evaluated using the theory. If the test is adequate then the possibility of opti- 
mizing the system can be considered relative to the theoretical optimum. If the system 
cannot be improved beyond certain limits of rate-determining input, then the optimum 
regimen can be calculated for the system as it is and its potential may then be appraised. 

This treatment is intended primarily for i.m. injections for several reasons. The two 
most important factors are the dosage interval and accumulation at the site of administra. 
tion. The optimum dosage interval is often too long for oral adn'Jnistration. For very slow 
input constants a large number of doses must accumulate at the, site of administration. If 
these methods are to be employed for an oral dosage form both of these limitations must 
be imposed on the equations and a compromise in ideality may be required. 

EXPERIMENTAL 

The optimum absorption constant for 7"ma x 
Sc~heme I represents extravascular administration of a drug described by a 1-compart- 

ment model with first-order absorption (ka) and elimination (k). Repetitive administra- 
tion of an infinite number of equal doses at a constant dosage interval 0") will provide 

A~__~ k ~ C  
Scheme I 

a steady-state time course for the concentration of drug in plasma (Cp) which may be 
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defined 

Cp 

where the limits of time are 0 ~< t ~< r, and the bioavailable dose (FDo), the apparent 
volume of distribution (Vd) and the first-order rate constants (k a and k) are held constant 
(Gibaldi and Perrier, 1975). Eqn. 1 may be written in terms of the amount in the body, 
D~* = Cp Vd, and solved for the steady-state minimum, Dmin, when t = r, F = 1, to give 

-F, fi' e-",' t/ 
The amount of drug in the depot during steady state may be defined by 

Do 
A~* = I 1 -  e_ka~. 1 e -kat (3) 

which may be solved for a maximum at t = 0 te give 

Do _ Do (4) 
Amax = (1 - e -kar) - 1 - f 

where f=  e -kar is the fraction of each Ao remaining in the depot at the end of each 
dosage interval. By setting r = k/k a = 1/R, Eqn. 2 may be written in terms of f and r as 
follows: 

Drain = - (5) 

which may be expressed as 

Drain= ( ~ j  (6) 

Eqn. 6 may be simplified by setting Q~= (Amax)/(Dmin), which is the maximum allow- 
able number of effective doses (Dmin) to be stored in the depot, so that 

Q** = ( r -  1) 1 - fr (7) 

where r = k/ka > 1 and f has the limits 0 < f < 1. 
For a chosen Q** value, it is possible to assess r as a function of the ratio of the rate 

constants, r. This was accomplished by digital computer reiteration to estimate the value 
of f which satisfied Eqn. 7 at each chosen value for Q** and r. Since the limits of f are 
0 < f < 1, its value was increased by an optimum increment from f ~ 0 to an f value 
which provided a calculated Q** in Eqn. 7 which did not differ significantly from the 
chosen Q**. To ensure that this was the desired f value, the iteration was repeated from 
f = I toward f = 0 until Eqn. 7 was again satisfied. Results were the same indicating that 
no other values in the range 0 < f < 1 will satisfy Eqn. 7 at each f'med value for r > 1 and 
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Fig. l. The effect of rate-limiting first-order absorption (k a) on the time between doses 0") to rnaintain 
a constant MEC. ~ach group of curves represents 1-compartment model drugs (~;cheme I) an¢ 2-com- 
partment mode~ drugs (Scheme If; Table 3) at constant Q~ - A~nax/MEC "Vd. When (A~nax/Vd) = 1 
then Q" = I/MEC a,d MEC values are: A = 0.01; B = 0.025; C = 0.04; D = 0.C67; E = 0.1, :rod F = 
0.2. Case no. 7 in Table 3 (lowest curve in A and B) has been omitted from C through F for clarity. 
All cases had similar top t values as listed in Table 1. 

Q".  The value for r was then calculated from r = - l n f / k  a :~tfter choosing a value for k to 
define ka. Typical results are shown in Fig. 1, where T is seen to pass through a maximum 
value for a given set of values for Qo" and k. 

If fr is insignificant compared to f then Eqn. 7 becomes 

Q "  = (r  - l ) / e  - k a ¢  ( 8 )  

which may be solved for Z to give 

I"= lnIQ°O/(r - l ) ] /k  a (9) 

By taking the first derivative of Eqn. 9 and regarding Q= and k as constants, one 
obtains 

_ k dr ln[QO' / ( r -  1)1 + (19) 
dka -4% 2 ka2(k - ka) 

Attempts to solve for ka at Tma x by setting d¢/dka (Eqn. 10) equal to zero were not 
successful. However, estimates were obtained by digital simulations of Eqn. 10 as shown 
in Fig. 2. The maximum time between doses, c,,ax, iF; obtained when (dT/dka) passes 
through zero in each plot. This represents the  opt imum k a value for maximum duration 
when k and Q"  are f'Lxed. It was observed that the product (ropt) ,e  approaches Q°' when 
the assumption k ~>> k a is satisfied. This would b e  predicted since setting Eqn.  10 equal 
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Fig. 2. The derivative (dT/dka) as defined by Eqn. 10 as a function of rate-limiting ka in Scheme I. 
It contains the assumption, f >> f r  which was invoked to derive Eqn. 8. QOO values for A through F 
are identical to those in Fig. 1. 

to zero and solving for Qo" yields 

Q "  = (ropt - l)(e)[ropt/(ropt - 1 ) l  

which approaches (ropt) • e as (ropt - 1) approaches ropt. 

(11) 

Comparison of 1- and 2-compartment models 
In the 2-compartment model with first-order absorption (Scheme II) D~ cannot be 

assumed to be equal to Cp Vd as was done for Eqn. 2 in order to define QO,. 

G 

Q-k"-,. c 
Scheme II 

The product, Cp Vd, where Vd is Vdarea, is only equal to D~ when Vdss = Vd, i.e. [(k~2 + 
k21)/a] = 1 (Perrier and Gibaldi, 1973). Only two of the cases simulated approach this 
limit ([k12 + k2z]/c~ =0.99 for case no. 6 and 0.98 for case no. 2 in Table 3). Curves for 
the plasma concentration of drug during repetitive dosing in the steady-state may be 
described in terms of Vd and ~ by equations analogous to those for Scheme I. The 1- and 
2-compartment model systems were normalized by holding Vd constant and evaluating 
the effect of r = k/ka = ~t/ka. Comparisons were thus carried out using the normal equa- 
tions for C~ as a function of time (Gibaldi and Perrier, 1975) by holding F = 1 and Amax, 
the steady-state maximum mass in the depot, constant. Eqn. 6 may be rewritten as 

M E C - ( r  - l)Vd [1 - - - : ~ ]  (12) 
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since Dmin = (Cp)minVd and (Cp)mi n is set equal to the minimum effective concentration 
(MEC) of drug. Similarly for Scheme II 

MEC __ fA~n__~kel.]/Xf + l " f r ' r ( l  f)l + z [ f r (1  ~?.~ } 
• " YL(i -" f~'r) J k(1 - f ) J (13) 

where X = ( k u t - k a ) / ( a - k a ) ( 3 - k a ) ;  Y = ( k u t - o O / ( k a - o O ( 3 - t x ) ;  Z f ( k 2 t - / 3 ) /  
(ka - ~)(cz - 3); r' = ¢x/3 and r = 3/ka. The effect of r on z was evaluated by reiteration of 
Eqns. 12 and 13 to determine that value for f which produced the MEC value at each 
value for r and at constant Amax, and Vd. The desired solution for f was assured as 
described under Eqn. 7. The value for r was then calculated from r = -lnf/ka. This repre- 
sents the duration obtained at f'Lxed Q** which is defined as Amax/(C;)mi n Vd. The 
denominator, (Cp)mi n Vd does not equal Dmin for most of the 2-compartment cases 
studied. In these cases the def'mition of Q** is not defined Q** = Amax/Dmin as it was for 
Eqn. 7. When (Amax/Vd) = 1, Q** corresponds to 1/MEC. 

Estimating r for  a specific therapeutic ratio 
In the simulations for Scheme I the optimum ratio (k/ka) and maximum r result in 

Dmax values that are roughly equal to (e) - (Drain) when r values are large. The following 
approach examined the situation where the desired (Dmax/Dmin) ratio is a property of the 
,drug. 

The maximum amount of drug in the body (Dmax in B of Scheme I) during steady- 
:state may be described as 

~. Do , 
Dmax = I -- e -kl" e-ktp (14) 

f 

where F = 1 and tp, the time at which the maximum occurs during the steady-state, is 
defmed 

, 1 1 l -ka(1 - e - k ~ ) l  
tp- (k,- k) 

P I f ( l  - fr) approaches one, tp may be expressed 

' 1 in [ ka )1 
tp - (k ,-  k) k(1 Se-k,  

Substituting Eqn. 16 into Eqn. 14 and setting (1 - fr) equal to one yields 

Dma. = Do [(k/ka) [k/(ka-k)] ] [(l  -- e -ka1") [k/(ka-k)] ] 

When absorption is rate-limiting ,and k > >  k a 

D~nax = Do/r(1 - e "-kal") 

Similarly, as (1 -- fr) approaches one, Eqn. 5 becomes 

. = [ D o k a l F  e -Rat ] 
Dmin L k -  kaJ L1 -~e-~-ka~rJ 

(15) 

(16) 

(17) 

(18) 

(19) 
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When k > >  k a this becomes 
i 

l Drain = - e_---~a;] (20) 

Dividing Eqn. 18 by Eqn. 20 yields 

[Dmax/Dmin] = ( l / e  - k a r )  = 1 / f  ( 2 1 )  

which is an approximation of the therapeutic ratio under conditions wherein k > >  k a 
and (1 - P')~ 1. 

Assuming that a minimum therapeutic (Dmin) and a maximum desirable (Dmax) bio- 
available dose are known from clinical observations, we can define a desired therapeutic 
index, T.I., as follows: 

T.I. = Dmax/Dmi n (22) 

An optimum dosage regimen must not exceed this ratio (i.e. [(Dmax)/(Dmin)] = T.I.) in 
the steady state. Substitution of T.I. into Eqn. 21 yields 

T.I.= [1/e -kar] (23) 

which may be rearranged to provide an equation to estimate the dosage interval 

r ' =  [ln(T.I.)/ka] (24) 

where r '  may be expected to approach the actual value, z, when the assumptions are suit- 
ably met. 

An estimated value for the maintenance dose, D~, may then be calculated using ,z' in 
Eqn. 19 to give 

[l_ 
D°=D~nin e -kar ]L ka 

In order to avoid a long onset time, a loading dose, D*, is often employed. 

D *  = D0/ (1  - e - k z ) ( 1  -- e - k a y )  

(25) 

(26) 

Since we have assumed e -kr approaches zero, the estimated loading dose, D*', may be 
calculated from 

D*' = D~/(1 - e -ka ' ' )  (27) 

In order to assess the suitability of Eqns. 24, 25 and 27, the values for Drain and Dmax 
were calculated for various combinations of ka, k, r and Do using Eqns. 2, 15 and 14. The 
estimated values were then compared to the known values. 

The onset time 
When absorption is not rate-limiting, the onset time is generally regarded to be about 4 

to 5 times the biological half.life of the drug. This would be expected to change in the 
case of rate-limiting absorption. 

Since infinite time is required to mathematically satisfy the steady-state assumption, a 
practical onset time must be chosen. We have arbitrarily defined onset time as the time at 
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which the plasma level permanently surpasses 95% of the minimum plasma level at 
s~eady-state during multiple dosing. Thus onset occurs when plasma levels never again fall 
below 95% of steady-state minimum. The relative onset time, ton, is then defined as the 
ratio of the onset time when ka < k (or ~) to the onset time where k a = 100k (or ~) as 
sl~own in Eqn. 28 where R = 1/r. 

ton-  onset time, R < 1 (28) 
onset time, R - 100 

Scheme III illustrates the simplest model for extravascular administration of a prodrug of 
a one-compartment model drug 

' ' k ~ r u ~  
[PD] kay' PD -~ D -~ Loss 

dose  

Sch.emc l l i  

The amount of drug in the body during multiple dosing of ?rodrug may be expressed as 

Dokakc[Al e-kat(1 e-nkal")/(1 e-ka~ + A2 e-kct(1 e-nk~:v)/(1 e -k~:~) 

+ A3 e-kt(1 -- e-nk~)/(1 -- e--kT)] (29) 

when F 1 n=thenumber ofdosesand As 1/[ka ' ' , , -kc) (ka  k)] A2 1 / [k~-  ' ° = = - " = k~)(kc - 
k)]; and A3 = l/[(ka - k~k~ - k)]. This equation, which was adapted from a single dose 
equation, (Kruger-Thiemer and Eriksen, 1966) has a symmetrical structure with respect 
to 1~ and k~. That is, the two constants may be interchanged without altering the equa- 
tion. The value for k was held constant at unity while the ratio k~Jk was varied between 
0.1 and 100 and k~q~ was varied from 1 to 20. For each case a digital simulation based on 
Eqn. 29 was employed to determine the onset time and the relative onset time was then 
defined similarly to that in Eqn. 28 except that the reference state (or denominator) was 
taken to be (k~Jk) = 99 and (k~Jk) = 100, i.e. neither input function in Scheme III is rate- 
lhniting. (Note that Eqn. 29 is not valid when any two or all three of the rate constants 
are equal.) 

R E S U L T S  AND D I S C U S S I O N  

"~e optimum absorption constant for l"ma x 
For a given MEC, Amax and Vd, there is only one optimum first-order input constant 

(ka) for all of the cases studied. This is illustrated in Fig. 1 where r passes through a maxi- 
mum value as a function of ka. Fig. 2 is a graph~-.al representation of Eqn. 10 where it is 
,assumed that ( f -  fr) in Eqn. 7 approaches f. Results shown in Table 1 indicate that the 
observed values for (ka)op t will agree with those based on Eqn. 10 (Fig. 2) if Q" is suffi- 
ciently large. Eqn. 11 implies that a sufficiently large value for Qm would result in the 
relationship, ropt ~ Q'O/e. Table 1 shows that the observed values for ropt may be esti- 
mated from Q®/e when rop t >i 3. The high % error at Q" < 8 is due to the fact that fr 
becomes significant in Eqn. 7 at low values for Q ' .  Tab~ie 2 shows that at Q" = 5, the 
assumption that [QO'/r - 1 ] may be approximated by 1/f (Eqn. 8) has a 29% error. 
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TABLE 1 

COMPARISON (%~) OF OBSERVED AND CALCULATED VALUES FOR THE MAXIMUM 
DOSAGE INTERVAL, ~'max, AND THE RATIO AT WHICI~ IT OCCURS, top t = k/(ka)op t = 
/~/(ka)op t WHEN Q" IS CONSTANT 

~'max a ropt 

(Qm) b Obs c Calcd d % a Obs c Calcd e % A Approx. f 

100 37.80 37.80 0.00 37.0 36.8 -0.54 37.0 
50 19.42 19.42 0.00 18.5 18.4 -0.54 18.5 
40 15.75 15.75 0.00 14.7 14.7 0.00 14.7 
25 10.25 10.25 0.00 9.09 9.20 1.21 9.26 
20 8.43 8.43 0.00 7.25 7.36 1.52 7.30 
15 6.60 6.62 0.30 5.43 5.52 1.66 5.43 
12 5.51 5.55 0.73 4.26 4.42 3.76 4.26 
10 4.76 4.84 1.68 3.59 3.68 4.25 3.53 
8 4.01 4.16 3.74 2.78 2.94 5.76 2.70 
5 2.81 3.28 16.7 1.67 1.84 10.2 - 

a To convert to real time: ~max/(k or/~). 
b Q -  = A~nax/(MEC)(Vd). 
c From Fig. 1 which has no approximation. 
d From Eqn. 31. 
• From top t = Qm/e. 
f From Fig. 2 which assumes f >> ff (Eqn. 10). 

Eqn. 9 may  be solved for Tma x when the ratio k /k  a is at its op t imum and r in real thne 
(Eqn.  9) equals ~max/k. 

i'mex-ropthlF • Q~- ] (30) 
Lrop t -- 1 

As discussed above rop t approaches the value Q ' / e  when k becomes 3 times larger than 

TABLE 2 

COMPARISON OF (l/f) TO [( l - f r ) / ( f - f r ) ]  AT top t. a 

Q" f l/f r l _ f  r ]  %A 

100 0.358 2.79 2.79 0 
40 0.340 2.94 2.94 0 
25 0.328 3.04 3.04 0 
20 0.315 3.17 3.17 0 
15 0.294 3.40 3.40 0 
12 0.278 3.60 3.64 1.10 
10 0.261 3.83 3.93 2.54 
8 0.234 4.27 4.54 5.95 
5 0.192 5.21 7.29 28.5 

a In Eqn. 7, which has no assumptions, Q= = ( r - l ) ( l  _fr)l(f_fr). In Eqn. 8, which assumes fr is insig- 
nificant, Q,O ~ (r-1)/f. 
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(]k:a)op t.  Substitution for rop t in Eqn. 30 yields 

?'max= ("~)" I- eQ** mLQ._e ] (31) 

Eqn. 31 was used to predict the values for Tma x at the various Q" values employed in 
Table 1. The values obtained agreed (A < 4%) with the observed values when Q ' ~  8. 
The values calculated for ropt were in agreement (A ~< 4%) with observed values when 
Q'~> 10. Even when ropt is 2.78 (OOO = 8) the error in Q ' / e  was less than 6%. From a 
practical point of view, ropt and Tma x may be estimated as in Table 1 when Q" ~ 8. At 
low values for Q~ the curves in Fig. 1 become flat making errors in the estimates even less 
critical. 

Effect o f  rate-limiting input on the onset  time for 1-and 2-compartment model drugs 
The effect of variation of rate.l:tmiting input on the time taken to surpass 9 5% of the 

plasma minimum drug level at steady-state during multiple dosing with a constant main- 
tenance dose and dosing interval is summarized in Fig. 3. It is apparent that when absorp- 
tion is rate-limiting, the onset t~ane is proportional to r. The open circles in Fig. 3 
represent the relative onset times for five of the seven 2-compartment cases (Table 3) 
simulated from combinations of 1:12, k2~, and kel and all 1.compartment cases. In these 
ca~es the values for the relative onset time are similar when r ratios a~e equal regardless 
of differences in the individual c¢,nstants (k12, k21 and kel) or model. The slope is 1.05 
for the plot ton versus r. The tw~? exceptions both represent cases where k]2 is smaller 
than kel (i.e. kel/k12 = 10). This variation may be said to be a property of the drug itself 
(i.e. the k12, k21, kel ratio) rather than an effect due to the drug input constant, ka 
(Byron and Notari, 1976). 

/o 

2+42 

, i I - L . _ J - - -  i i I i 
0 i 2 :3 4 5 6 7 8 9 I0  

r 

Fig. 3. The open circles (o) show the relative onset time (ton; Eqn. 28) as a function of r = k/ka 
, k t (Scheme D, #/Ra (Scheme II, case nos. 1, 2, 3, 5, and 6 in in Table 3) and /k c O r k/k~ (whichever 

is rateAimiting in Scheme liD. The two exceptions from Table 3 are case no. 4 (e) and case no. 7 (4). 
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TABLE 3 

THE VALUES OF THE SLOPES AND INTERCEPTS OF LINEAR REGRESSION LINES FOR THE 
DATA SHOWN IN FIG. 6 FOR 1- AND 2-COMPARTME?CI' MODEL DRUGS 

Case k 12 k21 ke I a ~ Linear regression a 

Slope Inter- 
cept 

1 1.0 1.0 1.0 2.62 0.382 0.964 -3.6 
2 1.0 1.0 0.1 2.05 0.0488 0.965 -4.1 
3 1.0 0.1 1.0 2.05 0.0488 0.964 -3.2 
4 0.1 1.0 1.0 1.37 0.730 0.964 -3.5 
5 1.0 0.1 0.1 1.19 0.00839 0.965 -4.0 
6 0.1 1.0 0. l 1.11 0.0901 0.961 -4.0 
7 0.1 0.1 1.0 1.11 0.0901 0.963 -1.1 

1-compartment model drugs 0.965 -4.1 

a From Fig. 6 where r '  versus r and r > 10 (to.s). 

Effect o f  rate-limiting input on the onset time o f  the drug after ,~lministration of  the pro- 
drug as shown in Scheme III 

Eqn. 29 has a symmetrical structure with respect to ka and kc. In other words, if the 
values for these two constants are interchanged, the identical equation for drug in the 
body is obtained. Fig. 3 illustrates the results obtained when the absorption rate constant 
for the prodrug, ka, is kept three or more times greater than the elimination rate constant 
for the drug, k. As the ratio, r, of the elimination rate constant (k) to the conversion rate 
constant from the prodrug to the drug, kc, becomes greater than 2, the line observed in 
Fig. 3 becomes identical with those for Schemes I and II (open circles). That is, the c:~n- 
version rate constant, k~, has become the rate-limiting input step. So long as the absor?- 
tion rate constant for prodrug, ka, is three or more times greater than the elimination rate 
constant for the drug, k, it will not contribute to the onset time. However, when the 
value for k~/k is less ~lan 3, the ka value causes a deviation in the ton versus k/kc plot. The 
degree of this deviation increases as the ratio k~k decreases. In all cases in Fig. 3 the 
onset time is roughly 4 - 5  X the to.s for rate.limiting input. 

Estimating r for a specific therapeutic index 
Eqn. 9 represents an approximation for r when Q" approaches (r - 1)/f. This condi- 

tion is satisfied when X, defined as 

~1 - fr]  
x = (32) 

I 

approaches the value l / f  so that ~ n .  7 may be written as [Q"/(r  - 1)] ~ 1If. At ropt, 
X ~ 1 If when Q" ~ 8 (Table 2). 

The approximation based on a therapeutic index (Eqn. 24) shows ttutt (Dmax/Dmin) 

approaches l / f  when k > >  ks  and f is insignificant as assumed in the derivation of 
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Fig. 4. The  m in im um r (k /k  a) necessary for  ~ =  ~ (r - l ) / f  (Eqn.  S) wi th in  an error  o f  2% ( . . . . .  ) 
and 4% ( . . . . . .  ) and  for  1- ~ l n [ Q ~ / ( r  - 1) ] /k  a (Eqn .  9) wi thin  2% ( ) and 4% ( . . . .  ) as a 
func t ion  o f  f = e -ka  y. 

Fig. 5. Illustration of a steady-state drug p~asma time course (C~ versus t where 0 < t < ~) and the 
errors in the f estimates associated with Eqn. 9 (line A) or Eqn. 24 (fine B). ¥ in Eqn. 24 is based on 
the conect [(C~')max/(Cp')min] ratio but it underestimates 1. by tb (Eqn. 15) and/, (Eqn. 34). Eqn. 9 
calculates the time required for the intercept value in line A to decrease to (C~)min. It will correctly 
estimate 1" if the time is sufficiently long for ~ to lie on the portion of the C~ curve that is common to 
both the curve and line A. 

Eqn. 19. Thus, the approximations become identical in the limits where r = - In  f/k a. 
Fig. 4. shows the minimum values required for r as a function of f in order to ensure a 

maximum error of 2 or 4% in the assumption that X = 1/f and in the resulting ~ estimates 
using Eqn. 9. If the fraction remaining at the end of each dosage interval is limited to 
f ~ 0.36 as observed in Table 1, then r I> 3 will ensure the estimation of both Q" ~ (r - 
1)/f and T ~ In [Q' / ( r  - 1)]/ks within a 4% error (Fig. 4). 

The limits on Eqn. 24 are more restrictive. In addition to requiring that ( f -  f r ) ~  f 
it is also necessary that k >~> ka. Assuming that f > >  fr, the sole difference in the esti- 
mates from Eqn. 9 and Eqn. 24 stems from the intercepts as illustrated in Fig. 5. The 
intercept associated with the derivation of Eqn. 9 is [Do/(1 - f ) ( r  - 1)] while that for 
Eqn. 24 is [Do/(l - f)r]. Thus Eqn. 9 will provide good estimates for r so long as ( f -  fr) 

f as shown in Fig. 5. As observed in Fig. 4 this will occur whenever f ~ 0.5 and r ~ 6. 
In contrast, Eqn. 24 underestimates ~. This is illustrated in Fig. 5, where it can be 
observed that 

F I 
= T - tp - A (33) 

F 
where tp is defined by [ ~n. 15, ~' by Eqn. 24 and A is calculated from 

i k 

which can be derived from the equations for the reference line,,; in Fig. 5. Tabl, 4 sum- 
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TABLE 4 

COMPARISON OF THE ESTIMATED VALUES, ~-', TO THE ACTUAL VALUES, ~-, AND THE SEG- 
MENTS WHICH ARE OMITTED IN THE ~-' ESTIMATE, t~ (Eqn. 15) AND A (Eqn. 34) WHEN k = 1 
hr - l .  

tp " ~-' A Estimate sum r 1" 

hr 
hr %a hr %a hr %a 1~ %a  

100 138.6 4.36 3.15 133.1 96.1 1.00 0.726 138.5 99.9 
100 69.3 3.95 5.70 64.3 92.9 1.00 1.45 69.3 100.0 
100 34.6 3.41 9.84 30.2 87.5 1.00 2.90 34.6 100.0 

10 13.9 2.24 16.2 10.5 76.2 1.05 7.62 13.8 99.3 
10 3.46 1.23 34.1 1.32 36.6 1.05 29.3 3.60 104.0 
5 6.93 1.65 23.9 4.16 60.0 1.12 16.1 6.93 100.0 
$ 3.46 1.19 32.8 1.32 36.4 1.12 30.8 3.63 104.9 
5 1.73 0.72 32.7 0.36 16.5 1.12 50.7 2.20 129.4 

a These are the % of the sums. Both r '  and A h~.ve the assumption (f-if) ~ f and k >> k a. 

mafizes the % contribution of tp, and A to the sum which would equal r if the assump- 

tions were met which is true for most of the cases LI the Table. As the ratio, ~, is 
l increased the % contribution of tp and ~ decrease and ~' becomes a better estimate of 

provided that (f- ~)~ f. Therefore at r = I00, r' is a reasonable estimate when f = 

0.25 (I" = I38.6 hl') and f = 0.5 (T = 59.3) but when f= 0.7| (T = 34.6) the estimate is 
only good to 87% of  r .  All three o f  these examples would be suitably estimated f rom 

Eqn.  9 as is obvious f rom Fig. 4 where rmi n (4~) = 3, 5 and 10 for f -  0.25, 0.5 and 0.7. 
A comparison between the estimated values, z ' ,  and the actual values fo~ ~ • is shown 

Ioo 
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T 

Fig. 6. Relationship between the estimates for 1-' expressed h-1 biological half-lives (Eqn. 24) and the 
actual T values for seven 2-compartment model drugs (defined in Table 3) and 1-compartment model 
drugs (open circles in inset and lower margin of band). 
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in Fig. 6. Equations for Cp versus t were reiterated for maximum and minimum C~ 
values as a function of various ~ values. The resulting MAX : MIN ratio was set equal to 
T.I. to calculate the estimated dosage interval, ~', from Eqn. 24 as discussed previously. 
The values were normalized by expressing T and T' in units of biological half-lives where 
to.s = 0.693/~ = 0.693/k. 

Fig. 6 summarizes the results for the seven cases in Table 3 and th,." 1-compartment 
model. Six of the seven cases are described by a narrow range shown as a band in the 
figure. The 1-compartment case is also included in this band. Once ~gain the odd case (7) 
represents a (kel/kl2)  ratio of 10. All of the cases are linear when T exceeds l0 times the 
half-life. The slopes are reasonably constant at 0.96 and the primary difference is in the 
intercept values (Table 3). The lowest line in Fig. 6 (i.e. case nos. 2, 5 and 6 shown as 
open circles in the inset) is identical to that for the l-compartment model. Due to the 
multiplicity of results it is not possible to have a single equation to correct the estimates. 

In view of the restrictive nature of Eqn. 24 it may be more reasonable to use Eqn. 9 
and regard the intercept as Dma x which, although incorrect, will err on the safe side. Thus, 
if ( f -  fr) approaches f, the intercept is defined as [Do/(1 - f)(r - 1)]. Thus to convert 
Eqn. 9 we note that 

[D~nin] [Q=/(r - I)] = [Do/(1 - f ) { r -  l)l (35) 

Since we will assume the intercept to be Dmax (recognizing that the actual maximum is 
always less) we can then set 

F vm '] 
= ~ = T.I. ( 3 6 )  

L Dmin.J 

Thus, ff Q® is defined as (r - 1) (T.I.), a known value tbr T.I. and a chosen value for Q"  
will set the value for r and Eqn. 9 will then estimate • provided f < 0.5 and r ) 6. 

Conclusions 
The significance of this study is best illustrated by examining a hypothetical example. 

Consider a drug of to.s = 8.8 hr where to.s -0 .693/k  (Scheme I) or to.s = 0.693//~ 
(Scheme II). What is the feasibility of extending the duration of action by a first-order 
release ian. prodrug if the MEC is 0.01/~g/ml, the Vd is 50 liters and the amount which 
may be allowed to accumulate in the muscle is 50 mg? The optimum rate-limiting input 
constant may be estimated from rop t ~ Q°°/e. Since Q® = Amax/(MEC)(Vd) = 50 mg/ 
(O.01 ,g/ml) (50 liters)= 100, ropt is 36.8. The ideal prodrug must therefore provide a 
rate-determining first-order rate constant for drug input equal to [(0.693)/(8.8hr) 
(36 .8) ]  = 2 .14  X l0 -3 hr -1 . The value for ~'max as estimated from Eqn. 31,is 37.8 which 
must be divided by k or/3 to provide the estimate in real time equal to 480 hr which may 
also be calculated directly from Eqn. 9. The value of f may now be calculated since f= 
e -kay = 0.36. The maintenance close of Do = 32 mg is then calculated from Eqn. 4 [Do/ 
(1 - f) = 50 rag]. Therefore if a prodrug with a rate-determining rate constant for release 
from the muscle or conversion to drug equal to 2.14 X 10 -3 hr "1 can be achieved, it will 
maintain the required MEC with an i.m. loading dose of 50 mg and a maintenance dose ot 
32 mg administered every 20 days. 

Suppose experimentation shows that a rate constant of 2.14 X l0 "3 hr -1 is not pos- 
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sible but ~1 X 10 -2 might be achieved. Since r = 7.9, Eqn. 9 may be used to approximate 
r ~ 268 hr and f - 0 . 0 7 .  This results in a 50 mg i.m. loading dose and a 46 rng main- 
tenance dose given every 11 days. 

The problem might also begin by choosing an ideal dosage regimen from a clinical 
viewpoint. For example, it might be c;jnsidered desirable to provide weekly administra- 
tion of a prodrug of the drug described above. Thus Zmax (Table 1) would be calculated 
from rmax--[(desired r) (0.693)/to.s] = 13.23. A plot of the rmax values in Table 1 
versus the rovt values is linear and may be described by rma x = 1.237 +0.987 ropt. Therefore 
ropt = 12.1 and Q** =(rovt) (e)= 33. Since z= 168hr and ka=6 .51X 10 -3 hr -1, f =  
0.335. A~nax = Q**(MEC)Vd = 16.5 mg; Do = Amax (1 - f) = 11 mg. A prodrug with rate- 
limiting input of 0.00651 hr -1 , administered i.m. with an initial dose of 16.5 mg and 
weekly administration of 11 mg, will maintain an MEC of 0.01/Jg/ml. 

These examples illustrate the use of the results in the present paper for solving typical 
situations which may arise in product development. The methods allow the a priori 
estimation of the maximum duration which may be achieved by design of the optimum 
prodrug for a given set of conditions. The drug itself would define the MEC, to.s and Vd. 
The value for A~nax must be chosen, but once it is ftxed only one krds (rate-constant 
for rate-limiting input) is optimum. The kras value is easily estimated from rop: = Q/e 
(provided Q**~ 8) and the corresponding rmax and Do are then calculated. This allows 
one to consider the feasibility of achieving success a priori and then to def'me the opti- 
mum result as a reference standard against which prodrug performance may be measured. 
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